Abington Heights School District Grade 3 Mathematics Curriculum

In Third Grade, students develop their numeracy skills through the following areas of study:

1. Numbers and Operations in Base Ten
2. Numbers and Operations - Fractions
3. Operations and Algebraic Thinking
4. Geometry
5. Measurement and Data

Board Approval Date: 5/3/2023
Adoption: 2023-2024 SY
Review Date:

Abington Heights Math Framework

Stakeholders	Actions
Students	* Engage in mathematical discussions, share their ideas openly, be inquisitive, seek to understand and learn more about mathematical concepts, and try their best daily. \star Exhibit creativity and curiosity in problem solving individually and collaboratively. \star Persevere in engaging and challenging daily mathematical practice. \star Come prepared to learn every day.
Teachers	\star Create a safe and collaborative classroom environment where students feel vested in a shared vision for mathematical excellence. \star Develop high quality instruction that meets the needs of all learners through differentiation. \star Use a variety of 21st century methodologies to advance learning. \star Partner with parents and guardians to support student success. \star Establish a collaborative community within the building and amongst grade levels to ensure a cohesive level of instruction.
Building Leaders	* Deeply understand the needs of teachers, students, the instructional materials being used, programs being implemented, and the expectations for state-level assessment scores - Knowledgeable about program and grade level standards - Ensure consistent and equal access to high-quality instructional materials and resources, building. \star Be partners with teachers, students and families: - Provide guidance and support to the mathematical community. - Understand needs of teachers, students and families. \star Trust the educators to make professional decisions based on program, student, and district needs.
Central Admin	Effectively communicate to the school board and community specific areas of need and how to support teachers and building leaders in a quest for mathematical excellence \star Deeply understand the needs of teachers, students, the instructional materials being used, programs being implemented, and the expectations for state-level assessment scores - Have a common metric for mathematical excellence. - Ensure consistent and equal access to high-quality instructional materials and resources, district. - Re-examine best practices/curriculum routinely (6 years). \star Support a culture of collaboration between the other stakeholder groups to maintain the standard of excellence of the Abington Heights \star Trust the educators to make professional decisions based on program, student, and district needs.
Parents/ Community	\star Be a strong support system and contribute by building a positive math community for students. \star Encourage a positive math mindset. \star Have conversations with their children about school and ask what they are learning about in school. \star Be open, receptive to the district's ideas about student learning and reach out to teachers/school to learn more about how they can support. \star Trust the educators to make professional decisions based on program, student, and district needs.
School Board	Provide the fiscal resources to support: Highly qualified professionals for mathematics - High-quality instructional materials - Effective and efficient math interventions for remediation - Professional development for math content and instructional practices Trust the educators to make professional decisions based on program, student, and district needs.

Abington Heights Grade 3 Mathematics Curriculum

| PA Core Standards | $\begin{array}{l}\text { PA Eligible Content } \\ \text { Numbers and Operations in Base Ten }\end{array}$ | $\begin{array}{c}\text { Everyday } \\ \text { Grathematics }\end{array}$ |
| :--- | :--- | :--- | :--- |
| Grade 3 Lessons | | |$]$

PA Core Standards	PA Eligible Content	Everyday Mathematics Grade 3 Lessons
	Mo3.A-F.1.1.4 Express whole numbers as fractions, and/or generate fractions that are equivalent to whole numbers (limit denominators to 1, 2, 3, 4, 6, and 8). Example 1: Express 3 in the form $3=3 / 1$. Example 2: Recognize that $6 / 1=6$. Mo3.A-F.1.1.5 Compare two fractions with the same denominator (limit denominators to $1,2,3,4,6$, and 8), using the symbols >, =, or <, and/or justify the conclusions	
Operations and Algebraic Thinking		
CC.2.2.3.A. 1 Represent and solve problems involving multiplication and division.	Mo3.B-O.1.1.1 Interpret and/or describe products of whole numbers (up to and including 10×10). Example 1: Interpret 35 as the total number of objects in 5 groups, each containing 7 objects. Example 2: Describe a context in which a total number of objects can be expressed as 5×7. Mo3.B-O.1.1.2 Interpret and/or describe whole-number quotients of whole numbers (limit dividends through 50 and limit divisors and quotients through 10). Example 1: Interpret $48 \div 8$ as the number of objects in each share when 48 objects are partitioned equally into 8 shares, or as a number of shares when 48 objects are partitioned into equal shares of 8 objects each. Example 2: Describe a context in which a number of shares or a number of groups can be expressed as $48 \div 8$. Mo3.B-O.1.2.1 Use multiplication (up to and including $10 \times$ 10) and/or division (limit dividends through 50 and limit divisors and quotients through 10) to solve word problems in situations involving equal groups, arrays, and/or measurement quantities. Mo3.B-O.1.2.2 Determine the unknown whole number in a multiplication (up to and including 10×10) or division (limit dividends through 50 and limit divisors and quotients	$\begin{aligned} & 1-8,1-9,1-10,1-12,2-5,2-6, \\ & 2-7,2-8,2-9,2-10,3-1,3-9, \\ & 3-10,3-11,3-12,5-4,5-5,5-6, \\ & 5-8,5-10,5-11,6-4,6-6,6-7, \\ & 7-2,7-3,7-12,8-2,8-3,8-4, \\ & 8-5,8-6,9-1,9-2,9-3,9-5, \\ & 9-6 \end{aligned}$

PA Core Standards	PA Eligible Content	Everyday Mathematics Grade 3 Lessons
	through 10) equation relating three whole numbers. Example: Determine the unknown number that makes an equation true.	
CC.2.2.3.A. 2 Understand properties of multiplication and the relationship between multiplication and division.	Mo3.B-O.2.1.1 Apply the commutative property of multiplication (not identification or definition of the property). Mo3.B-O.2.1.2 Apply the associative property of multiplication (not identification or definition of the property). Mo3.B-O.2.2.1 Interpret and/or model division as a multiplication equation with an unknown factor. Example: Find $32 \div 8$ by solving $8 \times ?=32$	$\begin{aligned} & 1-9,1-10,2-6,3-10,3-11, \\ & 3-12,5-4,5-5,5-6,5-8,5-9, \\ & 5-11,6-3,6-6,6-7,8-2,8-3, \\ & 8-5,8-7,9-2,9-3,9-5 \end{aligned}$
CC.2.2.3.A. 3 Demonstrate multiplication and division fluency.	Intentionally blank.	$\begin{aligned} & 1-8,1-10,2-4,2-5,2-6,2-7, \\ & 2-9,2-10,2-11,3-1,3-9,3-10, \\ & 3-11,3-12,3-13,4-12,5-4, \\ & 5-5,5-6,5-7,5-8,5-9,5-11, \\ & 6-2,6-3,6-4,6-6,6-7,6-8, \\ & 6-10,6-11,7-2,7-3,8-2,8-3, \\ & 8-5,8-6,9-1,9-2,9-3,9-5, \\ & 9-6 \end{aligned}$
CC.2.2.3.A.4 Solve problems involving the four operations, and identify and explain patterns in arithmetic.	Mo3.B-O.3.1.1 Solve two-step word problems using the four operations (expressions are not explicitly stated). Limit to problems with whole numbers and having whole-number answers.	$\begin{aligned} & 2-2,2-3,2-4,2-5,2-6,3-2, \\ & 3-3,3-4,3-5,3-6,3-10,4-12, \\ & 5-4,5-5,5-6,5-7,5-9,5-10 \\ & 6-1,6-7,6-8,6-9,6-10,6-11, \\ & 7-2,9-3,9-5 \end{aligned}$
CC.2.2.3.A.4 Solve problems involving the four operations, and identify and explain patterns in arithmetic.	Mo3.B-O.3.1.2 Represent two-step word problems using equations with a symbol standing for the unknown quantity. Limit to problems with whole numbers and having whole-number answers. Mo3.B-O.3.1.3 Assess the reasonableness of answers. Limit	

PA Core Standards	PA Eligible Content	Everyday Mathematics Grade 3 Lessons
	problems posed with whole numbers and having whole-number answers. Mo3.B-O.3.1.4 Solve two-step equations using order of operations (equation is explicitly stated with no grouping symbols). Mo3.B-O.3.1.5 Identify arithmetic patterns (including patterns in the addition table or multiplication table) and/or explain them using properties of operations. Example 1: Observe that 4 times a number is always even. Example 2: Explain why 6 times a number can be decomposed into three equal addends. Mo3.B-O.3.1.6 Create or match a story to a given combination of symbols (,,$+- \times, \div,<,>$, and $=$) and numbers. Mo3.B-O.3.1.7 Identify the missing symbol (,,$+- \times, \div,<,>$, and =) that makes a number sentence true.	
Geometry		
CC.2.3.3.A. 1 Identify, compare, and classify shapes and their attributes.	Mo3.C-G.1.1.1 Explain that shapes in different categories may share attributes and that the shared attributes can define a larger category. Example 1: A rhombus and a rectangle are both quadrilaterals since they both have exactly four sides. Example 2: A triangle and a pentagon are both polygons since they are both multi-sided plane figures. Mo3.C-G.1.1.2 Recognize rhombi, rectangles, and squares as examples of quadrilaterals and/or draw examples of quadrilaterals that do not belong to any of these subcategories.	$\begin{aligned} & 1-3,4-4,4-5,4-6,6-5,8-8 \\ & 9-4 \end{aligned}$

PA Core Standards	PA Eligible Content	Everyday Mathematics Grade 3 Lessons
CC.2.3.3.A. 2 Use the understanding of fractions to partition shapes into parts with equal areas and express the area of each part as a unit fraction of the whole.	Mo3.C-G.1.1.3 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. Example 1: Partition a shape into 4 parts with equal areas. Example 2: Describe the area of each of 8 equal parts as $1 / 8$ of the area of the shape.	$\begin{aligned} & 1-12,2-9,3-7,5-1,7-4,7-10, \\ & 7-11,8-7,9-4 \end{aligned}$
Measurement and Data		
CC.2.4.3.A.1 Solve problems involving measurement and estimation of temperature, liquid volume, mass, and length.	Mo3.D-M.1.2.1 Measure and estimate liquid volumes and masses of objects using standard units (cups [c], pints [pt], quarts [qt], gallons [gal], ounces [oz.], and pounds [lb]) and metric units (liters [1], grams [g], and kilograms [kg]). Mo3.D-M.1.2.2 Add, subtract, multiply, and divide to solve one-step word problems involving masses or liquid volumes that are given in the same units. Mo3.D-M.1.2.3 Use a ruler to measure lengths to the nearest quarter inch or centimeter.	$\begin{aligned} & 1-12,1-13,2-12,4-3,7-1,7-2, \\ & 7-3,9-2,9-3,9-4 \end{aligned}$
CC.2.4.3.A. 2 Tell and write time to the nearest minute and solve problems by calculating time intervals.	Mo3.D-M.1.1.1 Tell, show, and/or write time (analog) to the nearest minute. Mo3.D-M.1.1.2 Calculate elapsed time to the minute in a given situation (total elapsed time limited to 60 minutes or less).	$\begin{aligned} & 1-3,1-5,1-6,1-11,7-3,9-4, \\ & 9-7 \end{aligned}$
CC.2.4.3.A. 3 Solve problems and make change involving money using a combination of coins and bills.	Mo3.D-M.1.3.1 Compare total values of combinations of coins (penny, nickel, dime, and quarter) and/or dollar bills less than \$5.00. Mo3.D-M.1.3.2 Make change for an amount up to $\$ 5.00$ with no more than $\$ 2.00$ change given (penny, nickel, dime, quarter, and dollar). Mo3.D-M.1.3.3 Round amounts of money to the nearest dollar.	Intentionally blank.

PA Core Standards	PA Eligible Content	Everyday Mathematics Grade 3 Lessons
CC.2.4.3.A.4 Represent and interpret data using tally charts, tables, pictographs, line plots, and bar graphs.	Mo3.D-M.2.1.1 Complete a scaled pictograph and a scaled bar graph to represent a data set with several categories (scales limited to $1,2,5$, and 10). Mo3.D-M.2.1.2 Solve one- and two-step problems using information to interpret data presented in scaled pictographs and scaled bar graphs (scales limited to $1,2,5$, and 10). Example 1: (One-step) "Which category is the largest?" Example 2: (Two-step) "How many more are in category A than in category B?" Mo3.D-M.2.1.3 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Display the data by making a line plot, where the horizontal scale is marked in appropriate units-whole numbers, halves, or quarters. Mo3.D-M.2.1.4 Translate information from one type of display to another. Limit to pictographs, tally charts, bar graphs, and tables. Example: Convert a tally chart to a bar graph	$\begin{aligned} & 1-3,1-7,3-7,3-8,4-1,4-2, \\ & 4-3,4-6,4-7,6-5,8-1,9-7 \end{aligned}$
CC.2.4.3.A. 5 Determine the area of a rectangle and apply the concept to multiplication and to addition.	Mo3.D-M.3.1.1 Measure areas by counting unit squares (square cm , square m, square in., square ft, and non-standard square units). Mo3.D-M.3.1.2 Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	$\begin{aligned} & 2-12,3-7,4-7,4-8,4-9,4-10, \\ & 4-11,4-12,5-1,5-5,5-6,5-11, \\ & 8-7,9-5 \end{aligned}$
CC.2.4.3.A. 6 Solve problems involving perimeters of polygons and distinguish between linear and area measures.	Mo3.D-M.4.1.1 Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, exhibiting rectangles with the same perimeter and	$\begin{array}{\|l} 2-12,3-7,4-3,4-6,4-7,4-8, \\ 4-9,4-10,4-11,4-12,5-1,6-5 \end{array}$

PA Core Standards	PA Eligible Content	Everyday Mathematics Grade 3 Lessons
	different areas, and exhibiting rectangles with the same area and different perimeters. Use the same units throughout the problem.	

By the end of 3rd Grade, students will:

Numbers \& Operations in Base Ten	Numbers \& Operations Fractions	Operations and Algebraic Thinking	Geometry	Measurement and Data
Use place value to round twoand three-digit numbers to the nearest 10 or 100 Fluently add and subtract within 1,000 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction Multiply one-digit whole numbers by multiples of 10 in the range of 10-90 using strategies based on place value and properties of operations (ex. $4 \times 80,5 \times 60$) Order a set of (up to 4) numbers from least to greatest or greatest to least (up through 9,999)	Develop understanding of fractions (whole divided into equal parts) Identify and represent fractions on a number line Explore equivalent fractions $\left(\frac{1}{2}=\frac{2}{4}\right)$ Explore whole number, fraction relationship $\left(4=\frac{4}{1}\right)$ Compare fractions with like denominators using $<,>,=$ and reason with fraction models	Use multiplication and division within 100 to solve word problems involving equal groups, arrays, and measurement quantities Determine the unknown number of a multiplication or division equation (ex. $4 \times ?=12$) Apply the commutative property of multiplication (If $4 \times 3=12$, then $3 \times 4=12$) Apply the associative property of multiplication $(2 \times 3 \times 4$ is the same as 2×12) Fluently multiply and divide within 100 Know all multiplication facts up to 9x9 from memory Solve two-step word problems using the four operations	Understand that shapes in different categories (ex. rhombuses, rectangles, and others) may share attributes and that shared attributes can define a larger category (ex. quadrilaterals) Partition shapes into parts with equal areas and connect with knowledge of fractions	Tell and write time to the nearest minute Solve word problems involving elapsed time Measure and estimate liquid volumes and masses of objects using standard \& metric units Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units Measure to the nearest $\frac{1}{2}, \frac{1}{4}$ inch or nearest cm Compare total value of coins and bills (up to \$5) Make change for amount up to $\$ 5.00$ with no more than $\$ 2.00$ change given Round amounts of money to nearest dollar Draw scaled picture graph and bar graph and solve one-step and two-step problems related to graphs Explore area (relate to multiplication \& division) Identify perimeter of polygons and find unknown side length

Notes:

